El Numero Cuantico Magnetico Del Spin

En el año 1927, E.Schrödinger ( Premio Nobel de Física 1933), apoyándose en el concepto de dualidad onda-corpúsculo enunciado por L.de Broglie (Premio Nobel de Física 1929), formula la Mecánica Ondulatoria, y W. Heisenberg ( Premio Nobel de Física 1932) la Mecánica de Matrices. Ambas mecánicas inician un nuevo camino en el conocimiento de la estructura atómica, y ampliadas por Born, Jordan, Dirac y otros han dado lugar a lo que actualmente se denomina Mecánica Cuántica. Frente al determinismo de la mecánica clásica, la mecánica cuántica, es esencialmente probabilística y utiliza un aparato matemático más complicado que la mecánica clásica. Actualmente, el modelo atómico que se admite es el modelo propuesto por la mecánica cuántica (modelo de Schrödinger).

El modelo de Bohr es un modelo unidimensional que utiliza un número cuántico (n) para describir la distribución de electrones en el átomo. El modelo de Schrödinger permite que el electrón ocupe un espacio tridimensional. Por lo tanto requiere tres números cuánticos para describir los orbitales en los que se puede encontrar al electrón. La descripción del átomo mediante la mecánica ondulatoria está basada en el cálculo de las soluciones de la ecuación de Schrödinger (Figura 1); está es una ecuación diferencial que permite obtener los números cuánticos de los electrones.

ec_schrod1.gif

En esta ecuación:

phi1.gifes la llamada función de onda. Contiene la información sobre la posición del electrón. También se denomina orbital, por analogía con las órbitas de los modelos atómicos clásicos.

El cuadrado de la función de onda |phi1.gif|2 es la llamada densidad de probabilidad relativa del electrón y representa la probabilidad de encontrar al electrón en un punto del espacio (x, y, z).

E es el valor de la energía total del electrón.

V representa la energía potencial del electrón un punto (x, y, z). Por tanto, E-V es el valor de la energía cinética cuando el electrón está en el punto (x, y, z).

Las soluciones, o funciones de onda, phi1.gif, son funciones matemáticas que dependen de unas variables que sólo pueden tomar valores enteros. Estas variables de las funciones de onda se denominan números cuánticos: número cuántico principal, (n), angular (l) y número cuántico magnético (ml). Estos números describen el tamaño, la forma y la orientación en el espacio de los orbitales en un átomo.

El número cuántico principal (n) describe el tamaño del orbital, por ejemplo: los orbitales para los cuales n=2 son más grandes que aquellos para los cuales n=1. Puede tomar cualquier valor entero empezando desde 1: n=1, 2, 3, 4, etc.

El número cuántico del momento angular orbital (l) describe la forma del orbital atómico. Puede tomar valores naturales desde 0 hasta n-1 (siendo n el valor del número cuántico principal). Por ejemplo si n=5, los valores de l pueden ser: l= 0, 1 ,2, 3, 4. Siguiendo la antigua terminología de los espectroscopistas, se designa a los orbitales atómicos en función del valor del número cuántico secundario, l, como:

l = 0 orbital s (sharp)

l = 1 orbital p (principal)

l = 2 orbital d (diffuse)

l = 3 orbital f (fundamental)

El número cuántico magnético (ml), determina la orientación espacial del orbital. Se denomina magnético porque esta orientación espacial se acostumbra a definir en relación a un campo magnético externo. Puede tomar valores enteros desde -l hasta +l. Por ejemplo, si l=2, los valores posibles para m son: ml=-2, -1, 0, 1, 2.

El número cuántico de espín (s), sólo puede tomar dos valores: +1/2 y -1/2.

Capas y Subcapas principales

Todos los orbitales con el mismo valor del número cuántico principal, n, se encuentran en la misma capa electrónica principal o nivel principal, y todos los orbitales con los mismos valores de n y l están en la misma subcapa o subnivel.

El número de subcapas en una capa principal es igual al número cuántico principal, esto es, hay una subcapa en la capa principal con n=1, dos subcapas en la capa principal con n=2, y así sucesivamente. El nombre dado a una subcapa, independientemente de la capa principal en la que se encuentre, esta determinado por el número cuántico l, de manera que como se ha indicado anteriormente: l=0 (subcapa s), l=1 (subcapa p), l=2 (subcapa d) y l=3 (subcapa f).

El número de orbitales en una subcapa es igual al número de valores permitidos de ml para un valor particular de l, por lo que el número de orbitales en una subcapa es 2l+1. Los nombres de los orbitales son los mismos que los de las subcapas en las que aparecen.

Forma y tamaños de los orbitales

La imagen de los orbitales empleada habitualmente por los químicos consiste en una representación del orbital mediante superficies límite que engloban una zona del espacio donde la probabilidad de encontrar al electrón es del 99%. La extensión de estas zonas depende básicamente del número cuántico principal, n, mientras que su forma viene determinada por el número cuántico secundario, l.

Los orbitales s (l=0) tienen forma esférica. La extensión de este orbital depende del valor del número cuántico principal, asi un orbital 3s tiene la misma forma pero es mayor que un orbital 2s.

orbit_s.gif

Los orbitales p (l=1) están formados por dos lóbulos idénticos que se proyectan a lo largo de un eje. La zona de unión de ambos lóbulos coincide con el núcleo atómico. Hay tres orbitales p (m=-1, m=0 y m=+1) de idéntica forma, que difieren sólo en su orientación a lo largo de los ejes x, y o z.

orbitales_p.jpg

Los orbitales d (l=2) también están formados por lóbulos. Hay cinco tipos de orbitales d (que corresponden a m=-2, -1, 0, 1, 2)

orbitales_d.jpg

Los orbitales f (l=3) también tienen un aspecto multilobular. Existen siete tipos de orbitales f (que corresponden a m=-3, -2, -1, 0, +1, +2, +3).

orbitales_fa.jpg

Una vez descritos los cuatro número cuánticos, podemos utilizarlos para describir la estructura electrónica del átomo de hidrógeno:

El electrón de un átomo de hidrógeno en el estado fundamental se encuentra en el nivel de energía más bajo, es decir, n=1, y dado que la primera capa principal contiene sólo un orbital s, el número cuántico orbital es l=0. El único valor posible para el número cuántico magnético es ml=0. Cualquiera de los dos estados de spin son posibles para el electrón. Así podríamos decir que el electrón de un átomo de hidrógeno en el estado fundamental está en el orbital 1s, o que es un electrón 1s, y se representa mediante la notación:

1s1

en donde el superíndice 1 indica un electrón en el orbital 1s. Ambos estados de espín están permitidos, pero no designamos el estado de espín en esta notación.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-Share Alike 2.5 License.